3.227 \(\int (g x)^m (d+e x)^2 (d^2-e^2 x^2)^{5/2} \, dx\)

Optimal. Leaf size=206 \[ \frac{2 d^5 e \sqrt{d^2-e^2 x^2} (g x)^{m+2} \, _2F_1\left (-\frac{5}{2},\frac{m+2}{2};\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )}{g^2 (m+2) \sqrt{1-\frac{e^2 x^2}{d^2}}}+\frac{d^6 (2 m+9) \sqrt{d^2-e^2 x^2} (g x)^{m+1} \, _2F_1\left (-\frac{5}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{g (m+1) (m+8) \sqrt{1-\frac{e^2 x^2}{d^2}}}-\frac{\left (d^2-e^2 x^2\right )^{7/2} (g x)^{m+1}}{g (m+8)} \]

[Out]

-(((g*x)^(1 + m)*(d^2 - e^2*x^2)^(7/2))/(g*(8 + m))) + (d^6*(9 + 2*m)*(g*x)^(1 + m)*Sqrt[d^2 - e^2*x^2]*Hyperg
eometric2F1[-5/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m)*(8 + m)*Sqrt[1 - (e^2*x^2)/d^2]) + (2*d^5*e
*(g*x)^(2 + m)*Sqrt[d^2 - e^2*x^2]*Hypergeometric2F1[-5/2, (2 + m)/2, (4 + m)/2, (e^2*x^2)/d^2])/(g^2*(2 + m)*
Sqrt[1 - (e^2*x^2)/d^2])

________________________________________________________________________________________

Rubi [A]  time = 0.209129, antiderivative size = 206, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {1809, 808, 365, 364} \[ \frac{2 d^5 e \sqrt{d^2-e^2 x^2} (g x)^{m+2} \, _2F_1\left (-\frac{5}{2},\frac{m+2}{2};\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )}{g^2 (m+2) \sqrt{1-\frac{e^2 x^2}{d^2}}}+\frac{d^6 (2 m+9) \sqrt{d^2-e^2 x^2} (g x)^{m+1} \, _2F_1\left (-\frac{5}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{g (m+1) (m+8) \sqrt{1-\frac{e^2 x^2}{d^2}}}-\frac{\left (d^2-e^2 x^2\right )^{7/2} (g x)^{m+1}}{g (m+8)} \]

Antiderivative was successfully verified.

[In]

Int[(g*x)^m*(d + e*x)^2*(d^2 - e^2*x^2)^(5/2),x]

[Out]

-(((g*x)^(1 + m)*(d^2 - e^2*x^2)^(7/2))/(g*(8 + m))) + (d^6*(9 + 2*m)*(g*x)^(1 + m)*Sqrt[d^2 - e^2*x^2]*Hyperg
eometric2F1[-5/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m)*(8 + m)*Sqrt[1 - (e^2*x^2)/d^2]) + (2*d^5*e
*(g*x)^(2 + m)*Sqrt[d^2 - e^2*x^2]*Hypergeometric2F1[-5/2, (2 + m)/2, (4 + m)/2, (e^2*x^2)/d^2])/(g^2*(2 + m)*
Sqrt[1 - (e^2*x^2)/d^2])

Rule 1809

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[(f*(c*x)^(m + q - 1)*(a + b*x^2)^(p + 1))/(b*c^(q - 1)*(m + q + 2*p + 1)), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rule 808

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int (g x)^m (d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2} \, dx &=-\frac{(g x)^{1+m} \left (d^2-e^2 x^2\right )^{7/2}}{g (8+m)}-\frac{\int (g x)^m \left (-d^2 e^2 (9+2 m)-2 d e^3 (8+m) x\right ) \left (d^2-e^2 x^2\right )^{5/2} \, dx}{e^2 (8+m)}\\ &=-\frac{(g x)^{1+m} \left (d^2-e^2 x^2\right )^{7/2}}{g (8+m)}+\frac{(2 d e) \int (g x)^{1+m} \left (d^2-e^2 x^2\right )^{5/2} \, dx}{g}+\frac{\left (d^2 (9+2 m)\right ) \int (g x)^m \left (d^2-e^2 x^2\right )^{5/2} \, dx}{8+m}\\ &=-\frac{(g x)^{1+m} \left (d^2-e^2 x^2\right )^{7/2}}{g (8+m)}+\frac{\left (2 d^5 e \sqrt{d^2-e^2 x^2}\right ) \int (g x)^{1+m} \left (1-\frac{e^2 x^2}{d^2}\right )^{5/2} \, dx}{g \sqrt{1-\frac{e^2 x^2}{d^2}}}+\frac{\left (d^6 (9+2 m) \sqrt{d^2-e^2 x^2}\right ) \int (g x)^m \left (1-\frac{e^2 x^2}{d^2}\right )^{5/2} \, dx}{(8+m) \sqrt{1-\frac{e^2 x^2}{d^2}}}\\ &=-\frac{(g x)^{1+m} \left (d^2-e^2 x^2\right )^{7/2}}{g (8+m)}+\frac{d^6 (9+2 m) (g x)^{1+m} \sqrt{d^2-e^2 x^2} \, _2F_1\left (-\frac{5}{2},\frac{1+m}{2};\frac{3+m}{2};\frac{e^2 x^2}{d^2}\right )}{g (1+m) (8+m) \sqrt{1-\frac{e^2 x^2}{d^2}}}+\frac{2 d^5 e (g x)^{2+m} \sqrt{d^2-e^2 x^2} \, _2F_1\left (-\frac{5}{2},\frac{2+m}{2};\frac{4+m}{2};\frac{e^2 x^2}{d^2}\right )}{g^2 (2+m) \sqrt{1-\frac{e^2 x^2}{d^2}}}\\ \end{align*}

Mathematica [A]  time = 0.123601, size = 174, normalized size = 0.84 \[ \frac{d^4 x \sqrt{d^2-e^2 x^2} (g x)^m \left (d^2 \left (m^2+5 m+6\right ) \, _2F_1\left (-\frac{5}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )+e (m+1) x \left (2 d (m+3) \, _2F_1\left (-\frac{5}{2},\frac{m+2}{2};\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )+e (m+2) x \, _2F_1\left (-\frac{5}{2},\frac{m+3}{2};\frac{m+5}{2};\frac{e^2 x^2}{d^2}\right )\right )\right )}{(m+1) (m+2) (m+3) \sqrt{1-\frac{e^2 x^2}{d^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(g*x)^m*(d + e*x)^2*(d^2 - e^2*x^2)^(5/2),x]

[Out]

(d^4*x*(g*x)^m*Sqrt[d^2 - e^2*x^2]*(d^2*(6 + 5*m + m^2)*Hypergeometric2F1[-5/2, (1 + m)/2, (3 + m)/2, (e^2*x^2
)/d^2] + e*(1 + m)*x*(2*d*(3 + m)*Hypergeometric2F1[-5/2, (2 + m)/2, (4 + m)/2, (e^2*x^2)/d^2] + e*(2 + m)*x*H
ypergeometric2F1[-5/2, (3 + m)/2, (5 + m)/2, (e^2*x^2)/d^2])))/((1 + m)*(2 + m)*(3 + m)*Sqrt[1 - (e^2*x^2)/d^2
])

________________________________________________________________________________________

Maple [F]  time = 0.527, size = 0, normalized size = 0. \begin{align*} \int \left ( gx \right ) ^{m} \left ( ex+d \right ) ^{2} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^(5/2),x)

[Out]

int((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^(5/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}}{\left (e x + d\right )}^{2} \left (g x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^(5/2)*(e*x + d)^2*(g*x)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (e^{6} x^{6} + 2 \, d e^{5} x^{5} - d^{2} e^{4} x^{4} - 4 \, d^{3} e^{3} x^{3} - d^{4} e^{2} x^{2} + 2 \, d^{5} e x + d^{6}\right )} \sqrt{-e^{2} x^{2} + d^{2}} \left (g x\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^(5/2),x, algorithm="fricas")

[Out]

integral((e^6*x^6 + 2*d*e^5*x^5 - d^2*e^4*x^4 - 4*d^3*e^3*x^3 - d^4*e^2*x^2 + 2*d^5*e*x + d^6)*sqrt(-e^2*x^2 +
 d^2)*(g*x)^m, x)

________________________________________________________________________________________

Sympy [C]  time = 101.046, size = 442, normalized size = 2.15 \begin{align*} \frac{d^{7} g^{m} x x^{m} \Gamma \left (\frac{m}{2} + \frac{1}{2}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{m}{2} + \frac{1}{2} \\ \frac{m}{2} + \frac{3}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} + \frac{d^{6} e g^{m} x^{2} x^{m} \Gamma \left (\frac{m}{2} + 1\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{m}{2} + 1 \\ \frac{m}{2} + 2 \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{\Gamma \left (\frac{m}{2} + 2\right )} - \frac{d^{5} e^{2} g^{m} x^{3} x^{m} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{m}{2} + \frac{3}{2} \\ \frac{m}{2} + \frac{5}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac{m}{2} + \frac{5}{2}\right )} - \frac{2 d^{4} e^{3} g^{m} x^{4} x^{m} \Gamma \left (\frac{m}{2} + 2\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{m}{2} + 2 \\ \frac{m}{2} + 3 \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{\Gamma \left (\frac{m}{2} + 3\right )} - \frac{d^{3} e^{4} g^{m} x^{5} x^{m} \Gamma \left (\frac{m}{2} + \frac{5}{2}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{m}{2} + \frac{5}{2} \\ \frac{m}{2} + \frac{7}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac{m}{2} + \frac{7}{2}\right )} + \frac{d^{2} e^{5} g^{m} x^{6} x^{m} \Gamma \left (\frac{m}{2} + 3\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{m}{2} + 3 \\ \frac{m}{2} + 4 \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{\Gamma \left (\frac{m}{2} + 4\right )} + \frac{d e^{6} g^{m} x^{7} x^{m} \Gamma \left (\frac{m}{2} + \frac{7}{2}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{m}{2} + \frac{7}{2} \\ \frac{m}{2} + \frac{9}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac{m}{2} + \frac{9}{2}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)**m*(e*x+d)**2*(-e**2*x**2+d**2)**(5/2),x)

[Out]

d**7*g**m*x*x**m*gamma(m/2 + 1/2)*hyper((-1/2, m/2 + 1/2), (m/2 + 3/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*
gamma(m/2 + 3/2)) + d**6*e*g**m*x**2*x**m*gamma(m/2 + 1)*hyper((-1/2, m/2 + 1), (m/2 + 2,), e**2*x**2*exp_pola
r(2*I*pi)/d**2)/gamma(m/2 + 2) - d**5*e**2*g**m*x**3*x**m*gamma(m/2 + 3/2)*hyper((-1/2, m/2 + 3/2), (m/2 + 5/2
,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*gamma(m/2 + 5/2)) - 2*d**4*e**3*g**m*x**4*x**m*gamma(m/2 + 2)*hyper((
-1/2, m/2 + 2), (m/2 + 3,), e**2*x**2*exp_polar(2*I*pi)/d**2)/gamma(m/2 + 3) - d**3*e**4*g**m*x**5*x**m*gamma(
m/2 + 5/2)*hyper((-1/2, m/2 + 5/2), (m/2 + 7/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*gamma(m/2 + 7/2)) + d**
2*e**5*g**m*x**6*x**m*gamma(m/2 + 3)*hyper((-1/2, m/2 + 3), (m/2 + 4,), e**2*x**2*exp_polar(2*I*pi)/d**2)/gamm
a(m/2 + 4) + d*e**6*g**m*x**7*x**m*gamma(m/2 + 7/2)*hyper((-1/2, m/2 + 7/2), (m/2 + 9/2,), e**2*x**2*exp_polar
(2*I*pi)/d**2)/(2*gamma(m/2 + 9/2))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}}{\left (e x + d\right )}^{2} \left (g x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^(5/2),x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^(5/2)*(e*x + d)^2*(g*x)^m, x)